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Introduction

* Graphs in the real world are associated with multimodal attributes.

* texts, images, videos, ...
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Introduction

* Graphs in the real world are associated with multimodal attributes.
* texts, images, videos, ...
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Introduction
* Graph foundation model: GNN

* |t assumes that the node attributes can be represented as feature vectors.

GNN propagation
&
aggregation

Limitation |:The rich node attributes (text, images, ...) may not be well captured in a vector.



Introduction
* Graph foundation model: GNN

* |t produces an embedding as output for each node.

GNN propagation
&
aggregation

Limitation 2: [t mainly focus on representation learning tasks, while real-world scenarios can be
more complex (text generation/image generation...).
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* Text / Image foundation model ol L e

LLM

LARGE LANGUAGE MODEL

Large Language Models Stable Diffusion Models
* Trained on a large text corpus. * Trained on a large image corpus.
* Expertin text understanding and  Expertinimage understanding
generation. and generation.

Limitation: They can not well encode the structure information associated with the texts and images.



Introduction

e Our works

Target Text Prompt
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eg. House in .gmw Personalized Page Rank (PPR)  Similarity-based Re-ranking N (Denciing *AMimesamps)
(a) Training Setup (b) Semantic PPR-based Neighbor Sampling (c) InstructG2I Model

Graph Chain-of-Thought InstructG2lI

* Augment the LLMs with an external graph corpus.  Image generation with stable diffusion conditioned on a

multimodal attributed graph.
* LLMs interact with the graph via callable functions.

e Graph context search with semantics-aware PPR, graph
encoding with Graph Q-Former.
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Introduction

e Motivation

* Large language models suffer from hallucination and misinformation.

llama-2-13b-chat

Scroll down and start chatting

Who is the author of both "Weakly-supervised neural text classification" and "Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-
Rich Networks"?

The author of both "Weakly-supervised neural text classification" and "Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich
Networks" is Ming-Hsun Cheng.

X Hallucinating!



Introduction

e Motivation

* Existing works propose to augment LLMs with individual text units retrieved from
external knowledge corpora to alleviate the issue (RAG).

Augment LLM with External Texts

Question Deep Residual Learning \
Who develops both .' " ) Masked Autoencoders

Resnet and MAE? Are Scalable Vision
— Learners. Kaiming He, ...

Ttee LLMs AN External Text Corpora -/

~ -
S~a —_

Retrieval-augmented generation (RAG)



Introduction

e Motivation

* However, in many domains, texts are interconnected which form a (text-attributed) graph.
* Legal case opinions are linked by citation relationships.
* Web pages are connected by hyperlinks (Common Crawl).

P Coutter
[
Mo KChang v

7

Kide

World-Wide Web Co-author network
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Introduction

e Motivation

* However, in many domains, texts are interconnected which form a (text-attributed) graph.
* Legal case opinions are linked by citation relationships.
* Web pages are connected by hyperlinks (Common Crawl).

* The knowledge in such graphs is encoded not only in single texts/nodes but also in their
associated connections.

Text-Attributed Graphs




Introduction

e Motivation

* This motivates us to explore the problem of augmenting LLMs with external graphs.

Augment LLM with External Texts

Question

Who develops both ' "
—_—
Resnet and MAE?

~~o
-~ -

Augment LLM with External Graphs

Question
Who develops both " " 7 ™
Resnet and MAE? \ 4
LLMs Ly

NNN -
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S~ —_—— -

g N
Deep Residual Learning \
Masked Autoencoders
Are Scalable Vision
Learners. Kaiming He, ...
\ External Text Corpora /
(R _oB® A
L BTO e
\_ ® External Graph Y,
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Graph Chain-of-Thought

* Framework

* |terative reasoning, interaction and execution.

Question

[ Who develops both Resnet and MAE?

®
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@ LLM Reasoning ]:
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B
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External Grapy

15

(@&)Reasoning — @ Finish

Whole process

| B8 RetrieveNode(Resnet), RetrieveNode(MAE)

| @ We have obtained the answer: Kaiming He.

@ We need to first find ResNet and MAE in the graph.

c‘, The node IDs for Resnet and MAE are p-152 and p-562.

@- Mext, check the author neighbors of the two papers.

B8 Neighborcheck{p-152,author), Neighborcheck(p-562,author) (2)
G The authors neighbors are [a-54, a-75, ...] and [a-75, a-23, ...].

@ The intersection author is a-75. Let's check hisfher name.
Bl NodeFeature(a-75,name)
¢, The name for a-75 is Kaiming He.

Q Finish[Kaiming He]
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Graph Chain-of-Thought

* LLM reasoning
* LLM conduct reasoning on what further external information from graph is needed.
* If the question is answerable with the current contexts from graphs.

Question Whole process
[ Who develops both Resnetand MAE? | _ - - - - - _ v __. @ We need to first find ResNet and MAE in the graph.
|® ] | B8 RetrieveNode(Resnet), RetrieveNode(MAE) @
,— LLM Reasoning |'
@ g I (_", The node IDs for Resnet and MAE are p-152 and p-562.

|
B e P P P T Y
':1 R :u [ i I E Mext, check the author neighbors of the two paparsl

— P G Graph Execution |, B8 Neighborcheck(p-152,author), Neighborcheck(p-562,author) (2)

- |
@ 9/ b= I:"‘ """ c, The authors neighbors are [a-54, a-75, ...] and [a-75, a-23, ...].
R i e
-“"""#{' F\\ QD I||é&) The intersection author is a-75. Let’s check his/her name.

. 1

@ a I @ LLM REESDFIII'Ig ]| Bl NodeFeature(a-75,name) @

l Il ¢ Thename fora-75 is Kaiming He.

A
AN

o8

L
I
ExternalGraph /\ _ _‘~———M — | e v o
K D/L@Heasnning—h ® Finish @ Finish[Kaiming He] @

We have obtained the answer: Kaiming He.




Graph Chain-of-Thought

* Interaction between LLMs and graphs
* Let LLMs know how to interact with the graphs and fetch relevant information.

Question

[ Who develops both Resnet and MAE?

— o — —— e o o =

\*:._r@ LLM Reasnning ]I
= |
|
|

Whole process

@ Woe need to first find ResNet and MAE in the graph.

I[BB8 RetrieveNode(Resnet), RetrieveNode(MAE)
(_", The node IDs for Resnet and MAE are p-152 and p-562.

Mext, check the author neighbors of the two papers.
Neighborcheck(p-152,author), Neighborcheck(p-562, author) @

4 ®

A 3 A
9/

,0\>%9§\\a/

N

External Grapty

L
I
IL@Ft’.easu:nrnirng — @& Finish

| @ We have obtained the answer: Kaiming He.

c, The authors neighbors are [a-54, a-75, ...] and [a-75, a-23, ...].

@ The intersection author is a-75. Let's check his/her name.
Bl NodeFeature(a-75,name)
¢, The name for a-75 is Kaiming He.

Q Finish[Kaiming He]
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Graph Chain-of-Thought

* Interaction between LLMs and graphs

* We pre-define four graph functions to cover both the semantic and structure information
on graphs:

RetrieveNode(Text): Identify related nodes in the graph with semantic search.

NodeFeature(NodelD, FeatureName): Extract the textual feature information for a specific node.

NeighborCheck(NodelD, NeighborType): Return the neighboring information for a specific node.

NodeDregree(NodelD, NeighborType): Return the degree of a specific neighbor type for a node.



Graph Chain-of-Thought

* Execution on graphs

* Call the functions and fetch relevant information from the graph.

Question

f Who develops both Resnet and MAE?

External Graph b e I
K '/ IL@Ft’.easu:nrnirng — @& Finish

I @ LLM Reasoning ]

> G Graph Execution ]

_______ S (&) We need to first find ResNet and MAE in the graph.

] : - RetrieveNode(Resnet), RetrieveNode(MAE) @
@ LLM REESDHII‘Ig I Jg The node IDs for Resnet and MAE are p-152 and p-562.

Whole process

@ Mext, check the author neighbors of the two papers.

B8 Neighborcheck(p-152,author), Neighborcheck(p-562,author) (2)
land [a-75, a-23, ...].

The authors neighbors are [a-54, a-75, ...

@ The intersection author is a-75. Let's check his/her name.
Bl NodeFeature(a-75,name) @

I ¢, The name for a-75 is Kaiming He.

@ We have obtained the answer: Kaiming He.

Q Finish[Kaiming He] @
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Experiments

* Overall performance

Model Academic E-commerce Literature Healthcare Legal
R-L. GPTd4score R-L. GPT4score R-L. GPTdscore R-LL GPTdscore R-LL GPTdscore

LLaMA-2-13b-chat 8.13 8.03 7.01 12.00 5.32 20.83 5.25 13.70 1597 16.11

% Mixtral-8x7b 9.02 8.14 12.54 18.00 7.50 22.50 3.88 20.00 12.74 16.11
= GPT-3.5-turbo 6.05 12.80 9.18 23.50 10.43 26.67 5.83 14.44 10.51 20.00
- LLaMA-2-13b-chat 8.69 8.52 9.23 12.50 7.61 20.00 1.44 5.93 1537 16.67
E é Mixtral-8x7b 8.44 8.02 23.14 29.50 13.35 2792 3.22 16.67 19.69 25.00
GPT-3.5-turbo 5.83 991 14.06 20.00 10.04 20.83 4.57 8.52 18.14 23.89

2 LLaMA-2-13b 22.01 22.97 12.48 20.00 9.25 20.00 2.97 4.81 17.98 17.22
& % Mixtral-8x7b 27.77 31.20 32.87 37.00 20.08 33.33 8.66 15.19 2348 25.56
S & GPT-3.5-turbo 18.45 26.98 17.52 28.00 14.94 24.17 8.69 14.07 18.66 2222
GRrRAPH-COT 31.89 33.48 42.40 44.50 41.59 46.25 22.33 28.89 30.52 28.33

* Graph-CoT outperforms all the baselines consistently and significantly.

* Base LLMs are exhibiting fairly poor performance, typically because the LLMs may not contain the knowledge
needed to answer those questions.

* Graph RAG LLMs outperform text RAG LLMs in most cases since the former can provide more structure-

aware context.
19



Experiments
* How different LLMs perform in Graph-CoT?

Model GPT4score
GRAPH-COT

w. LLaMA-2-13b-chat 16.04

w. Mixtral-8x7b 36.46

w. GPT-3.5-turbo 36.63

w. GPT-4 46.28

* An LLM with more advanced instruction following ability and reasoning ability (i.e., GPT-4) can contribute
to better performance in Graph-CoT.



Experiments
* Graph RAG vs Graph-CoT

Model GPT4score
GPT-3.5-turbo 1948
+ node retrieval 16.63

+ 1-hop subgraph retrieval 23.09
+ 2-hop subgraph retrieval 22.12
+ GRAPH-COT 36.29

* Retrieving |-hop ego-graph performs the best, but still underperforms Graph-CoT.
* The number of nodes/texts grow exponentially as the hop number grows linearly.
* A large-hop ego-graph will lead to a super long context -> lost in the middle.



Experiments
* Graph-CoT on questions of different difficulty levels

80.00

Em easy
m medium
s hard

80

70 66.15
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Legal
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.00
. .50
-
Academic E-commerce Literature Healthcare
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GPT4score
N w & wu
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o
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* Graph-CoT performs relatively high on easy question (simple reasoning chain) while having worse
performance on medium/hard questions (complex/inductive reasoning).
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InstructG2l: Synthesizing Images from Multimodal
Attributed Graphs

Bowen Jin, Zigi Pang, Bingjun Guo, Yu-Xiong Wang, Jiaxuan You, Jiawei Han
NeurlPs 2024

website: instructg?i.github.io
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instructg2i.github.io

Introduction

* Background
* In real world graphs, nodes are associated with text and image information (“multimodal attributed graphs”).
* E.g., product graphs in e-commerce, picture graphs in art domain.
* Prev., we mainly focus on graphs with “text” (“text-attributed graph”).

School Van Gogh self-portrait

=B i The Starry Night
The Angel Trials Bluetogth mouse —
Wireless\keyboard
Sunrise

art graphs

S

product graphs
24



Problem

* How we conduct node image generation on such graph?
* Application on E-commerce

Generative recommendation
What the future item “Bluetooth headset” the user \
will be interested in looks like?

15.6” FHD Laptop, Intel

School ckp}c& teens

- —-—
Bluetooth\headset

Bluetogth mouse —
Wireleskgboard

25
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The Angel Trials

Bluetooth headset



Problem

* How we conduct node image generation on such graph?
* Application on Art domain

Virtual art creation
How will a picture titled “a man playing the piano” look
like with 50% Monet style and 50% Van Gogh style?

ke
o A
Monet arts & Van Gogh arts S aZla
‘ 53 .') .y 7
i Van Gogh self-portrait
\\ / -
/
The Starry Night \\ /7
/7
v’ >

Sunrise

a man playing the piano

a man playing the piano
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Problem
* Task: Synthesizing Images from Multimodal Attributed Graphs

* Input:
* A graph with multimodal attributes.
* The neighbors of the target node on the graph.
* Text description for the target node.
* Output:
* The image of ﬁhe target node.

'-- - ."?\"__ ;
15.6” FHD Lapt%p,lntel TS -
o | B W1
D8 1% -
4 Van Gogh self-portrait
o=, \
\\ / B
Hivisae 13 \ / o
The Angel Trials The Starry Night /7 L
7’

\' v
7’
Bluetogth mouse @

Wirele%’board

Generative recommendation Virtual art creation 27

Sunrise



Problem

* Existing works

* Image generation with conditions

» Text-to-image generation: stable diffusions
* Image-to-image generation: ControlNet, InstructPix2pix

* No work on conditioning on graphs

* Graph Neural Network
* GCN, GraphSAGE, ...
* They mainly focus on representation learning
* Cannot handle generation tasks

Input

e —) @ Latent Space ’ 'éonditionina
E = Diffusion Process Eemantiq
Ma
Ll Denoising U-Net €y \ar Text
( Repres ‘
— entations
D ]
'_'_,--"’
2T
Pixel Space »
— g
— [/
Pg i 2 T
switch  skip connection concat N

denoising step crossattention

Hidden layer Hidden layer

= LT RelU | o— /7

° &
° a =

QOutput

ReLU
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Instruct G2

e Model Overview

LY
\. J/

)
\“'»,?‘\ « r'd & ‘\'r,:; « ,3""
] o ]
@'/ .—5,./ B Q’/ » o
’/ j "\i ’/ |
' ) }i\ a
| 3 | -8
‘{',\

Text Prompt Stru(ftural Relevance
e.g. House in Snow Personalized Page Rank (PPR)

. (a) Training Setup ||

Vision-
Language

Feature
Similarity

Target Text Prompt

Semantic Relevance
Similarity-based Re-ranking

(b) Semantic PPR-based Neighbor Sampling

Target Text Prompt

e.g. “House in Snow”

Graph Q-former

e : Text Encoder
i ( Self-Attention ] : (Stable Diffusion)
Image : xN
-~ Encoder — | Cross-Attention ) !
(CLIP) (I
! !
Graph Prompt Tokens Text Prompt Tokens

20808 0000
@ Conditioning ‘

___ Graph2Image Diffusion” ~_

(Denoising x T Timestamps)

b ™

(c) InstructG2I Model
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Instruct G2

* Stable diffusion (SD)

Text Prompt Tokens

Jdogd
Conditioning ‘

Text2Image Diffusion 6

(Denoising X T Timestamps)

Stable Diffusion

L= EZNEI‘IC(QS),CT,ENN(O,l),t [”E — €9 (Zta t, h(CT))“2] .

30



Instruct G2

* Graph context-conditioned stable diffusion

-

Graph Prompt Tokens Text Prompt Tokens

Joogdd O00gdd
@ Conditioning ‘

Graph2Image Diffusiorb g l

(Denoising X T Timestamps)

InstructG21

h(cr,cq) = [hr(cr), ha(cg)] € R Uer tle)

L = By Enc(z),er,co,e~N(0,1),t [”E — €o(2z¢, ¢, h(cr, CG))Hz]



Instruct G2

* How to get “Graph Prompt Tokens””?

Graph Prompt Tokens

o0ogad

1. Find relevant context from the graph.
-- Semantic PPR-based Neighbor Sampling

2. Compress graph context into tokens.
-- Graph Encoding with Text Conditions

o

Text Prompt
e.g., House in Snow

J

32



Instruct G2

* How to get “Graph Prompt Tokens””?

Graph Prompt Tokens

o0ogad

1. Find relevant context from the graph.
-- Semantic PPR-based Neighbor Sampling

o

)&

Text Prompt
e.g., House in Snow

J

33



Instruct G2

* Semantic PPR-based Neighbor Sampling

Goal: Find relevant context from the graph

for target node image generation. 9
Q, Vision-
Language
’/ > Feature

Similarity

Stepl: Structure relevance with Personalized
Page Rank (PPR). &

. . @' Target Text Prompt
Ste p 2 ) Se ma ntl cre I evance w It h co nte nt Structural Relevance Semantic Relevance
similar |ty calculation. Personalized Page Rank (PPR)  Similarity-based Re-ranking

Semantic PPR-based Neighbor Sampling
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Instruct G2

* How to get “Graph Prompt Tokens””?

Graph Prompt Tokens

o0ogad

2. Compress graph context into tokens.
-- Graph Encoding with Text Conditions

-

)&

Text Prompt
e.g., House in Snow

J
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Instruct G2

* Graph Encoding: a simple baseline

Cons:
* The neighbor feature extraction is isolated.
Goal: Compress graph context into tokens.  The extracted features are general. They should be
conditioned on our target goal (text prompt).

"ww - wp
- t f

Graph prompts

Selected neighbors

Selected neighbors

a simple baseline

36



Instruct G2

* Graph Encoding with Text Conditions

Selected neighbors

Graph prompts

Graph Encoder

Selected neighbors

Yy ¥w

& Cross-Attention

Self-Attention

Cross-Attention

Self-Attention

A A A A

Text prompts

Ours: Graph Q-Former

37



Instruct G2

* Graph Encoding with Text Conditions

Target Text Prompt
e.g. “House in Snow”

&

Graph Q-former

v e e | Text Encoder
; : C o ) ' (Stable Diffusion)
« 7% Image | xN
D fHET Encoder ——:—*C Cross-Attention ) :
da’s (cLp)
€ v
Graph Prompt Tokens Text Prompt Tokens

o000 DDDDD
@ Conditioning “

Graph2Image Diffusion” =~

(Denoising X T Timestamps)

InstructG2I Model

B I8 TED
ait M:" P\ B
// e .
"
\[o s l I\ S
RS
! o g & R
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Instruct G2

* How to make the image generation controllable?

* Control the guidance weight between text and graph conditions.

* Control multiple graph guidance.



Instruct G2

e Controllable Generation

Goal: Balance the guidance weight from the text and graph.

Classifier-free guidance:

ég(zt, C) — 69(Zt, @) + S - (ég(zt, C) — Eg(zt, @))

Graph classifier-free guidance:

€9(2t,cq,cr) = €9(24, D, D) + 87 - (€0(2¢, D, cr) — €9(2¢, T, D))
+8G - (Eﬁ(ztacGacT) — Eﬂ(zta @,CT)).



Instruct G2

e Controllable Generation

Goal: Control from multiple graph conditions.

Graph classifier-free guidance:

€0(2¢,ca,or) = €9(24,D, D) + s7 - (€0(2¢, D, cr) — €9(24, D, D))
+8G - (EQ(ZtaCGaCT) — Eﬂ(zta EacT))-

Multiple graph classifier-free guidance:

€o(zt,cq,cr) = €9(2t, D, D) + s7 - (e9(2t, T, cr) — €9(2t, T, D))
+ 358 - (eo(ar, e, or) — eo(2e, B, o7)),



Experiments

 Datasets Dataset # Node # Edge
 ART500K ART500K 311,288 643,008,344
* nodes:artworks; edges: same-author, same-genre relationships. Amazon 178,890 3,131,949

Goodreads 93,475 637,210

* text: title;image: picture.

* Amazon
* nodes: products; edges: co-view relationships.
* text: title;image: picture.

* Goodreads
* nodes: books; edges: similar-book semantics.
* text: title;image: cover image

l.
FCHOES
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Experiments

 Quantitative results

110
SD1.5
ARTS500K Amazon Goodreads 100 . SD1.5FT
Model CLIP score DINOv2 score  CLIP score  DINOv2 score CLIP score  DINOw? score 2 90
=] ¢ ControlNet

SD-1.5 58.83 25.86 60.67 32.61 42.16 14.84 ¢ 80

SD-1.5 FT 66.55 34.65 65.30 41.52 45.81 18.97 = \ Ours
Instruct pix2pix  65.66 33.44 63.86 4131 47.30 2094 w70 e
ControlNet 64.93 32.88 59.88 34.05 42.20 19.77 60

Ours 73.73 46.45 68.34 51.70 50.37 25.54 50

0.2 0.25 0.3 0.35 0.4 0.45
Dinov2 Score

* Our model has consistently better performance than competitive baselines.
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Experiments

* Qualitative results

Ground-truth  Sampled Neighbors (a) Ours (b) Stable Diffusion (c) InstructPix2Pix

(d) ControlNet

Prompt: “Thicker fuller hair instantly thick sexum”

* Our method exhibits better consistency with the ground truth.
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Experiments

* Same text prompts with different graph conditions

Text: a man playing the piano

Pablo Picasso Salvador Dali Vincent van Gogh Gustave Courbet Caravaggio Max Beckmann
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Experiments

* Text and graph guidance study

Graph Guidance
Text Prompt BT e
MHouse n
Wooded Area.
e As text guidance increases, the
Sampled Neighbors

generated image incorporates
more of the desired content.

* As graph guidance increases, the
generated image adopts a more
desired style.

Text Guidance
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Experiments

* Single or multiple graph guidance

Gustave Courbet

Text: a man playing piano

* When single graph guidance is
provided, the generated artwork
aligns with that artist’s style.

Pablo Picasso

* As additional graph guidance is
introduced, the styles of the two
artists blend together.

47



Experiments

* Single or multiple graph guidance

My little brother

» . #To%

Text: a house in the snow

Pablo Picasso

f-‘,-' o g
™

7,25
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Thank You !

[=]

Subscribe and learn

more about our works! Graph CoT InstructG2lI
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