Knowledge Discovery

Bridging Text Data and Graph Data:
Towards Semantics and Structure-aware




Estimated Timeline for This Tutorial
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Introduction: 15 mins (8:30 - 8:45 Bowen Jin)

Part I: Enhancing Text with Graph Structure: 45 mins (8:45 - 9:30 Sha Li)

Part Il: Graph Mining with Large Language Models: 45 mins (9:30 - 10:15 Bowen Jin)
Break: 15 mins (10:15 - 10:30)

Part Ill: Text Mining with Structured Information: 45 mins (10:30 - 11:15 Yu Zhang)
Part IV: Summary & Looking Forward: 15 mins (11:15 - 11:30 Bowen Jin)
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Over 80% of Big Data is Text Data

A Ubiquity of big unstructured, text data

d Big Data: Over 80% of our data is from text (e.g., news, papers, social media):

unstructured/semi-structured, noisy, dynamic, inter-related, high-
dimensional, ...

O How to mine/analyze such big data systematically?

O Text Representation (i.e., computing vector representations of
words/phrases/sentences)

 Basic Structuring (i.e., phase mining & transforming unstructured text into
structured, typed entities/relationships)

2 Advanced Structuring: Discovering Hierarchies/taxonomies, exploring in
multi-dimensional space




Graphs are Ubiquitous
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Graphs and substructures: Chemical compounds, visual objects, circuits, XML

Biological networks

Bibliographic networks: DBLP, ArXiv, PubMed, ...

Social networks: Facebook >100 million active users
World Wide Web (WWW): > 3 billion nodes, > 50 billion arcs
Cyber-physical networks

World-Wide Web

Yeast protein
interaction network
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Text & Graph often appears simultaneously

Q Text sequence can be modeled as graph (AMR, information extraction, ...).
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A Graphs are associated with text information.
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Foundation for Text Analysis: (Large) Language Models

d Language models are pre-trained on large-scale general-domain corpora
to learn universal/generic language representations that can be
transferred to downstream tasks via fine-tuning
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Generative Large Language Models: The GPT Series

AQ GPT models: Large language models (LLMs) trained for text generation

Q Applicable to a wide range of tasks
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Challenges of Large Language Models

Not factually guaranteed: May generate wrong information

Can humans live with one heart?

Heavy supervision required: Trained on massive annotated data

ChatGPT:

No, humans cannot live with just one heart. The heart is a vital organ that

pumps blood throughout the body, supplying oxygen and nutrients to all the

would quickly die.
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Foundation for Graph Analysis: Graph Neural Networks

d Graph Neural Network
2  Propagation & Aggregation.
Applied for various downstream tasks.

Friend
recommendation

Product
recommendation

Fraud detection

Churn prediction



Challenges of Graph Neural Networks

a Not able to capture rich contextualized text info with nodes/edges.

2 Need to transfer to BOW features or context-free embeddings.
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Bridging Text Data and Graph data

ad Towards Semantics and Structure-aware Knowledge Discovery
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Overview of Enhancing Text with Graph Structure

ad Text can be converted to (or augmented with) graph structures at various different
levels

d  How should we perform the conversion and when is it useful?
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Overview of Graph Mining with Large Language Models

A Inreal world, text and graph appears simultaneously.

0  Text data are associated with rich structure information in the form of graphs.

O Graph data are captioned with rich textual information.
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A Although LLMs have shown remarkable text reasoning ability, it is underexplored

whether such ability can be generalized to graph scenarios.

ad How can we adopt LLMs on graphs?




Overview of Text Mining with Structured Information

ad Text data are often associated with or accompanied by structured information.

O How to inject structured information into pre-trained language models for various text mining tasks?
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Our Roadmap of This Tutorial
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