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Graphs

ad Graph data is ubiquitous in real world.

Traffic Graphs Protein Graphs Molecule Graphs Academic Graphs Social Graphs
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Large Language Models (LLMs)

a

a

LLMs have demonstrated their strong text encoding/decoding ability.

Task-agnostic

Task Specific task feature learner ELMO. BERT. GPT-.12
solvmg helper Word2vec (NPLM), NLPS Context-aware representations
capacity n-gram models Static word representations Pre-training + fine-tuning

Neural context modeling
Solve typical NLP tasks

Neural LM

Statistical methods
Probability estimation
Assist in specific tasks

Statistical LM

Transferable
NLP task solver

Solve various NLP tasks

Pre-trained LM

General-purpose
task solver

GPT-3/4 ChatGPT. Claude
Scaling language models

Prompt based completion
Solve various real-world tasks

Y

1990s 2013

2018

2020

LLMs have shown newly found emergent ability (e.g., reasoning).
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Why LLM on Graphs?

Q Inreal world, text and graph usually appears simultaneously.

0  Text data are associated with rich structure information in the form of graphs.
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Why LLM on Graphs?

aQ Although LLMs have shown their pure text-based reasoning ability, it is underexplored
whether such ability can be generalized to graph scenarios (i.e., graph-based
reasoning)

Question:
What is the majority party now in the country where Canberra is located?




Graphs

@ Three main scenarios

Traffic Graphs Protein Graphs Molecule Graphs Academic Graphs Social Graphs
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Text-Paired Graphs

Pure Graphs

Jin, et al. Large Language Model on Graphs: A Comprehensive Survey. Arxiv. 2023.12.



Outline

ad Why Mining Graphs with Large Language Models?
A Mining Pure Graphs with Large Language Models @
O Direct answering: NLGraph (NeurlPs’23)
O Heuristic reasoning: Think-on-Graph (ICLR’24)
Q Mining Text-Attributed Graphs with Large Language Models
aQ Mining Text-Paired Graphs with Large Language Models



NLGraph

ad A comprehensive benchmark to test if LLMs on directly solve graph tasks.

/-| 1.Connmivily} ~ /—l 2. Cycle } ~ 3. Topological Sort ~ /—| 4. Shortest Path } ~
00— @ (0) (2) @—-2"@\\
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Determine if there is a path between In'an undirected graph, (i) means that In an undirected graph, the nodes are
two nodes in the graph. Note that (i,j) node i and node j are connected with an | | In a directed graph with 5 nodes numbered from 0 to 4, and the edges are:
means that node i and node j are undirected edge. numbered from 0 to 4: an edge between node 0 and node 1 with
connected with an undirected edge. The nodes are numbered from 0to 5, node 0 should be visited before node weight 2, ..
Graph: (0,1) (1,2) (34) (45) and the edges are: (34) (3,5) (1,0) (2,5) 4, .. ) ) Q: Give the shortest path from node 0 to
Q: Is there a path between node 1 and (2,0) o Q: Can all the nodes be visited? Give the | | node 4.

\node 4? J | QIs there a cycle in this graph? ) [ solution. ok )

@ ~ ,{s. Bipartite Graph M-khhg)— @ N @ ~
@_ 0—'@\4 P (4)
e o

There are 4 job applicants numbered

In a directed graph, the nodes are from 0to 3. and 5 jobs numbered from In an undirected graph, (i,j) means that | |In an undirected graph, the nodes are

numbered from 0 to 3, and the edges 0to 4. Eachl appliceJ:nt E inearadin node i and node j are connected with numbergd frqrp 0 to 4, and every pode has an

are: ‘ some of the jobs. Each job can only an undirected edge. embedding. (ij) means tha? node i and node j

an edge from node 1 to node 0 with accept one applicant and a job The nodes are numbered from 0 to 4, are conngcted with an undirected edge.

capacity 10, ; applicant can be appointed for only one | | and the edges are: (4,2) (04) (4,3) (0,1) | |Embeddings: node 0: [1,1], ---

an edgt)e’ fGrom node 0 to node 2 with job. 0,2) 4,1) (2,3) The edges are: (0,1) ..

o i A ) Applicant 0 is interested in job 4, .. Q:Is there a path in this graph that In a simple graph convolution layer, each

an edge from node 2 to node 3 with Q?Eind an assignment ofjons to visits every node exactly once? If yes, .node"s embedding is u‘pdated by the sum of

Capacity & : applicants in such that the maximum give the path. Note that in a path, its neighbors embeddings.

Q What is the maximum flow from node number of applicants find thejob they adJacent nodes must be connected Q: What's the embeddlng of each node after
k1 to node 37 ) | are interested in with edges. one layer of simple graph convolution layer?

- J T J \. vy

Wang, et al. Can Language Models Solve Graph Problems in Natural Language? NeurlPs 2023.



NLGraph

A LLMs have preliminary graph reasoning ability.

Method Connectivity Cycle Shortest Path
Easy Medium Hard Avg. Easy Medium Hard Avg. Easy Hard Easy(PC) Hard (PC) Avg.
RANDOM 50.00 50.00 50.00 50.00 5000 5000 50.00 50.00 6.07 6.69 14.73 13.81 17.81
ZERO-SHOT 8381 7275 6338 7131 5000 50.00 50.00 50.00 2940 21.00  46.00 26.76 30.79
FEW-SHOT 9375  83.83 7661 8473 80.00 70.00 61.00 7033 3111 2600  49.19 35.73 35.51
CoT 9432 82.17 7721 8457 8467 6333 5325 66.75 6389 29.50  76.84 35.79 51.51
0-CoT 79.55  65.83 6853 7130 5533 5767 49.00 5400 889 7.50 62.39 43.95 32.03
CoT+SC  93.18 84,50 8279 86.82 8200 63.67 5350 6639 6889 2900  80.25 38.47 54.15
ad LLMs are (un)surprisingly brittle.
0  LLMs indeed rely on spurious correlations in problem settings.

Dataset ZERO-SHOT FEW-SHOT CoT 0-CoT CoT+SC Avg.

GENERAL 74.67 83.33 85.33 66.00 82.67 78.40

CHAIN 51.67 (-23.00) 45.00 (-35.33) 40.83 (-44.50) 92.50 (+26.50) 44.17 (-38.50) 54.83 (-23.57)

CLIQUE 60.83 (-13.84) 73.33 (-10.00)  85.00 (-0.33)

52.50 (-13.50)

83.33 (+0.66)

71.00 (-7.40)

Wang, et al. Can Language Models Solve Graph Problems in Natural Language? NeurlPs 2023.



Think-on-Graph

ad Encourage LLMs to reason on graphs

Question:
What is the majority party now in the country where Canberra is located?

LLM-only

(Chain-of-Thought Prompt): Let's think step by step.
Response: Canberra is the capital of Australia. According to my knowledge up to September 2021 the prime minister of Australia is Scott Morrison, who is a
member of the Liberal Party. So the answer should be Liberal Party. 3{

(@)
ILLM B KG '
N I "“Canberra is located in  }
(Prompt): Please generate a SPARQL query for this ( Canbema ) : Australia. ! Response: Sorry, based on
question. ; Majority party in Australia is i my query result from the
Response: SELECT 2country ?party WHERE { P isLocatedin | ______! NotFound | Prompf | knowledge base, | cannot
answer your question since

information.

?canberra dbprop:isLocatedin ?country . y majorityParty
?country dbprop:majorityParty ?party . ( Australia }---------- Labor Party | do not have enough
} [not exist] x

- ) | L) B

“Think”} ' Think} _ -
The most relevant one is (Canberra, The most relevant one is (Australia,

capital of, Australia). Information not prime minister, Anthony Albanese).
enough for answering the question.
Looking for triples related to Australia

| know that Anthony Albanese is from |
“Think” || abor Party.

Enough information is collected for
'__>ianswering this question.

Looking for
triples related
to Canberra

LLM-Inh.nnl&knoModgo - ic cchide

R e o O e e i e

I \ s ~» N

1 ' has been leader of :

: : g < Anthon ) ,,,,,, the Australian Labor | 1 :

: H , Aliian y Party (ALP) since ' | The answer is Labor Party

! . \ 2019and ...... ! ]
(c)

Sun, et al. Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. ICLR 2024.
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Outline

ad Why Mining Graphs with Large Language Models?
A Mining Pure Graphs with Large Language Models
Q Mining Text-Attributed Graphs with Large Language Models @

0 Model architecture — representation learning
O Language Model Pretraining
0 Augment LLM with Graph

AQ Mining Text-Paired Graphs with Large Language Models
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Text-attributed Graph

Q A graph where nodes/edges are associated with rich text information.

E-commerce Network

= 7)) c—

blog |
corpus |

POl |

Social Network
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\
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MAPLE Benchmark

Q A graph where nodes/edges are associated with rich text information.

Field Paper #Papers #Labels #Venues #Authors #References
Source
Art Journal 58,373 1,990 98 54,802 115,343
Philosophy Journal 59,296 3,758 98 36,619 198,010
Geography Journal 73,883 3,285 98 157,423 884,632 ———
Business Journal 84,858 2,392 97 100,525 685,034 R o
Sociology Joumi 90,208 1,935 98 85,793 842,561 .;5% - = pa per
History Journ 113,147 2,689 99 84,529 284,739 NSO -7
Political %z T corpus
. Journal 115,291 4,990 98 93,393 480,136 g
Science , s -
Envi tal /
avonmemiat | journal 123945 694 100 265728 1,217,268 u ! @ paper
Science 1
Economics Journal 178,670 5,205 97 135,247 1,042,253 L I auth or
Engineering Journal 270,006 10,683 100 430,046 1,867,276 Cnuiecies I
Psychology Journal 372954 7,641 100 460,123 2,313,701 -
C . . %, venue
omputer Conference 263,393 13,613 75 331,582 1,084,440 THE W T &
Science Journal 410,603 15,540 9 634,506 2,751,996 cowrgRence KPP
Geology Journal 431,834 7,883 100 471,216 1,753,762
Mathematics Journal 490,551 14,271 98 404,066 2,150,584 .
e Academic Network
= Journal 1,337,731 6,802 99 1,904,549 5,457,773
Science
Physics Journal 1,369,983 16,664 91 1,392,070 3,641,761
Biology Journal 1,588,778 64,267 100 2,730,547 7,086,131
Chemistry Journal 1,849,956 35,538 100 2,721,253 8,637,438
Medicine Journal 2,646,105 36,619 100 4,345 385 7,405,779

Zhang, et al. The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study. WWW 2023.



15

Outline

ad Why Mining Graphs with Large Language Models?
A Mining Pure Graphs with Large Language Models
Q Mining Text-Attributed Graphs with Large Language Models

0 Model architecture — representation learning @

O LLM-only: MICoL (WWW’22), METAG (arxiv’24)

@  GNN-cascaded LLM: GLEM (ICLR’23)

O  Graph-empowered LLM: GraphFormers (NeurlPs’21), Heterformer (KDD’23), Edgeformers (ICLR’23)
O Language Model Pretraining

O Augment LLM with Graph

AQ Mining Text-Paired Graphs with Large Language Models
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Representation learning on text-attributed graphs

d Given a text-attributed network, people are interested in various tasks.

2 Node classification, link prediction, and node clustering.

2 E.g., academic network

O Automatically classify each paper.

d Find the authors of a new paper.

d Provide paper recommendation.

Jo [
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=N _----f-7 paper

| >\/D><>D, 2 i corpus

/ ( aper
/ = ; @ text-rich) |

/ Association for '
Computational

I (textless) -
@ "WEB . :
CONFERENCE {40[1 D<>/[ ve n u e 1

/
I
4 I
T'E] L author ;
:

Paper classification

Author disambiguation

Paper recommendation

Link prediction



Representation learning on text-attributed graphs

d Given a text-attributed network, people are interested in various tasks.

2 Node classification, link prediction, and node clustering.

Q Learn representations for nodes/edges which can be utilized in various tasks.

O Textual information & structure information

R
g ;: " .KDD f(x) 7 9(z)  Clustering
@\_'fffjﬁi:::.::—---:::ii_ff i | = WEB [ ] [ ] Classification
<4 g“ Twsdm Link prediction
- f(x) , g9(z)
—/ —>

17
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Model Architecture

d LLM-only
O  Finetune LLM with signal from graphs.
O  For example, MIColL (meta-path indictive), METAG (multiplex neighbors).
Center Node Embedding
ad GNN-cascaded LLM anns (5 0@|
4 LLMtext encoding -> GNN graph encoding. '?se.e.rz.t.a.rze;aq!\ap.c!e'....
a For example, TextGNN, GLEM. [ Transformer Layer ]
[ Transformer Layer ]
[ Transformer Layer ]
d Graph-empowered LLM GNN-cascaded UM (5
d  Joint model for text & graph encoding.
O  For example, GraphFormers, Edgeformers, Heterformer.

Center Node Embedding

| Transformer Layer |

O]

B B AGG
o

| Transformer Layer |

S
B o@\AGG
O

| Transformer Layer |
B
Graph-Empowered LLM
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LLM-only: MICoL

a Observation

2 Although hard to know “what is what”, network can provide signals on “what is similar to what”

O E.g., papers written by the same author can share similar fine-grained topics @/Rﬁ
O E.g., papers published in the same venue can share similar coarse-grained topics g—%c.—E
d Meta-path
o A meta-path is a path M defined on the graph 75 = (797,7g) , and is denoted in the form of M =
vi v, By Emyy where Vi ... Vi are node types and Ei,....Em-1 are edge types.
8—+8 B-5-8 2,
_ (a) meta-path: PAP (b) meta-path: P->P<-P po§
ad Meta-graph - %/%CL
O A meta-graph is a directed acyclic graph (DAG) M defined on . It has single source \@L@/é
node V; and a single target node Vi, . /" /l\ $8.” B A
R e

(c) meta-graph: P(AV)P (d) meta-graph: P<-(PP)->P
Zhang, et al. Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.
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LLM-only: MIColL

O Two papers connected via a certain meta-path/meta-graph should be more similar than two

randomly selected papers.

Bi-Encoder
Should be larger Should be smaller

Cross-Encoder
Should be larger Should be smaller

score(d, d”) > score(d,d™) score(d, d”) > score(d,d")
e / e+ \ e / \
& & & Linear Layer Linear Layer
[ BERT { BERT } { BERT J A 4
4 R ( )
4 4 BERT BERT
Documentd  Documentd® Document d~ b A g b ! g
@ . ;
o~ = _ [CLS] d [SEP] d* [SEP] [CLS] d [SEP] d~ [SEP]
w

exp(cos(eg,eg+)/7)
exp(cos(ey,eq+)/7) + Zfil exp(cos(ey, ed;)/T)

— log

Document d Document d* Document d~
/&’\ S ,
\3’/

Zhang, et al. Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification. WWW 2022.




LLM-only: METAG

a Texts in the real world are often interconnected by multiple types of semantic relations
0 “same-venue” relations edges between papers -> sharing coarse-grained topics

0 “cited-by” relations edges between papers -> sharing fine-grained topics

Multiplex Text-Attributed Graph

Citation graph Co-authorship graph Co-venue graph

21 Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.



LLM-only: METAG

a Existing PLM-based methods: learn a single vector for each text unit

O Assumption: the semantics of different relations between text units are largely analogous

P(eij|vi,v;) o Sim(hy,, hy,) Py, (eijlvi, vj) ~ Peijlvi,v;) ~ Pr(eij|vi, vj)

Q This assumption does not hold for multiplex text-attributed graphs

0 Semantic distribution shift exists across different relations P, (eijlvi,v;) # P (eij|vi,vj)
Target relation 1.0 Target relation 0.6

cbh sa sV cr ccb
1 1 1 1

cb

sa
on
sa

ch sa Y cr cch
Ke)
()
0.6 ' ]

sV

Source relation
cr

Source relat
sv

o o
N I
cch cr
o o
- N

cch

Data distribution shift Model performance shift
22 Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.
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LLM-only: METAG

aQ Framework overview

Relation

Multiplex Text-Attributed Graph

Relation 1
----------- Relation 2
—mr— Relation 3

Multiplex Text-
Attributed Graph

. - . -

Shared LM Shared LM Shared LM
OO0 En.0 DODEE-E [@DCOOEN-N
Relation  Text token Relation Text token Relation Text token

embeddings embeddings embeddings embeddings embeddings embeddings

Multiplex Representation Learning.

2

Sha

=

Shared LM

—

Direct source relation inference.

Relation
embedding pool

000

oo
goo

=

s

@ Shared LM

Learn to select inference.

Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.




LLM-only: METAG

ad Multiplex representation learning

Table 1: Multiplex representation learning experiments on academic networks: Geology and
Mathematics. cb, sa, sv, cr, and ccb represent “cited-by”, “same-author”, “same-venue”,

“co-reference”, and “co-cited-by” relation respectively.

Geology Mathematics
Model cb sa sV cr ccb  Avg. cb sa Y cr ccb  Avg.
SPECTER 12.84 1289 1.5 5.56 9.1 838 2874 2355 239 1596 25.59 19.25
SciNCL 1591 143 157 641 104 9.72 36.14 2641 283 19.82 30.69 23.18
MPNet-v2 30.87 2094 194 1036 17.16 1625 46.12 2992 3.11 23.60 3642 27.83
OpenAl-ada-002 30.39 21.08 2.02 16.57 16.69 1735 39.86 2722 2.67 19.81 31.62 2424
DMGI 2899 2779 491 986 1632 17.58 46.55 4262 6.11 27.80 38.87 28.85
HDMI 37.89 3487 3.63 11.32 1955 2145 52.65 5271 554 31.80 4254 37.05
Vanilla FT 5442 4320 595 1848 2993 3040 75.03 6346 871 4476 5994 50.38
MTDNN 5840 5250 10.60 19.81 31.61 3458 78.18 71.04 1290 4739 61.75 5425
Ours 60.33 5555 1230 20.71 3292 3636 79.40 7251 14.03 47.81 62.24 55.20

Table 2: Multiplex representation learning experiments on e-commerce networks:

and Sports. cop, cov, bt, and cob represent “co-purchased”, “co-viewed”, “bought-together”,

and “co-brand” relation respectively.

AN 1Y

Clothes, Home,

Clothes Home Sports
Model cop cov bt cob  Avg.  cop cov bt cob  Avg. cop cov bt cob  Avg.
MPNet-v2 55.89 6092 59.75 39.12 5392 5202 61.83 62.04 3810 5350 41.60 64.61 49.82 40.61 49.16
OpenAl-ada-002 65.30 70.87 69.44 4832 6348 6099 7143 7136 4786 6291 50.80 73.70 60.20 54.06 59.69
DMGI 56.10 5296 5846 30.88 49.60 4827 5274 5790 4881 5193 4137 4627 4124 3192 40.20
HDMI 62.85 63.00 69.69 5250 62.01 51.75 5791 5791 5339 5524 4543 6122 5556 52.66 53.72
Vanilla FT 81.57 8046 88.52 6738 7948 7372 7549 8580 76.83 7796 6822 77.11 80.78 7846 76.14
MTDNN 80.30 78.75 87.58 6594 78.14 7249 75.17 84.00 7729 7724 6620 76.50 79.72 78.69 75.28
Ours 82.04 81.18 8890 68.34 80.12 7359 79.06 86.58 80.07 79.83 6792 79.85 81.52 8154 77.71

24

A Embedding visualization
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Jin, et al. Learning Multiplex Representations on Text-Attributed Graphs with one Language Model Encoder. Arxiv 2023.
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GNN-cascaded LLM: TextGNN

Q LLM (text encoding) -> GNN (graph aggregation)
d  LLM & GNN are optimized simultaneously

Output
I Concatenate 1 _[ Crosing Laver } Concatenate
\___orAdd . or Add
D y’ N
GNN Aggregator | GNN Aggregator
(GraphSAGE, GAT) (GraphSAGE, GAT)
= = & = g g
A * Fl *
Text Text Text Text Text Text Text
Encoder Encoder Encoder Encoder Encoder | Encoder Encoder
o i o y € / \ y \ 4 & 4 \ J "
Query Query Query Query Keyword Keyword Keyword
Neighbor1  Neighbor 2 Neighbor 3 Neighbor1  Neighbor 2 Neighbor 3

Zhu, et al. TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search. WWW 2021.

\
|

Text
Encoder
4

Keyword




GNN-cascaded LLM: GLEM

a Iteratively optimize LLM & GNN

outgut
input
Text Embedding ek M-Step ta el
:]C >| GNN training :i
Pseudo-label by LM Prsad bt b) g
E-Step )
LM training je—0
Text Attribute

Zhao, et al. Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023.
26



Graph-Empowered LLM: GraphFormers

d Learning on homogeneous text-attributed graphs.
- Nodes are associated with textual information.

d There is only one type of node and edge.

d Put GNNs in between Transformer layers

L L
TRM TRM
/[A) /41 ~
TRM Tf/{\M TRM —~ — ||
L g i TRM TRM
TRM TRM TRM s —7's
AN
il il 1T —~ LI N L
TRM TRM TRM TRM TRM

(A) Cascaded Transformers-GNN (B) GNN-nested Transformers

27 Yang, et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. NeurlPs’21.
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Graph-Empowered LLM: GraphFormers

d Link prediction

Product DBLP Wiki
Methods P@1 NDCG MRR P@1 NDCG MRR P@1 NDCG MRR
PLM 0.6563 0.7911 0.7344 0.5673 0.7484 0.6777 0.3466 0.5799 0.4712
TNVE 0.4618 0.6204 0.5364 0.2978 0.5295 0.4163 0.1786 0.4274 0.2933
IFTN 0.5233 0.6740 0.5982 0.3691 0.5798 0.4773 0.1838 0.4276 0.2945
PLM+GAT 0.7540 0.8637 0.8232 0.6633 0.8204 0.7667 0.3006 0.5430 0.4270
PLM+Max 0.7570 0.8678 0.8280 0.6934 0.8386 0.7900 0.3712 0.6071 0.5022
PLM+Mean 0.7550 0.8671 0.8271 0.6896 0.8359 0.7866 0.3664 0.6037 0.4980
PLM+Att 0.7513 0.8652 0.8246 0.6910 0.8366 0.7875 0.3709 0.6067 0.5018
GraphFormers 0.7786 0.8793 0.8430 0.7267 0.8565 0.8133 0.3952 0.6230 0.5220
O Online A/B test
Il m 2.08 °o| m B 2.09 2
. 24 . 118I 1.44 I - % 0-64 0.49 0.48 T 0.53 I ) 24 o

Day

8

9 10

7 8 9 10

Yang, et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. NeurlPs’21.



Graph-Empowered LLM: Edgeformers

d Learning on textual-edge graphs.
d E.g., user-review-item network, social network

d Link prediction, edge classification, node classification, etc.

E-commerce Network Social Network

29 Jin, et al. Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR’23.
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Graph-Empowered LLM: Edgeformers

Q Edge representation learning (Edgeformer-E)

O Network-aware edge encoding with virtual node tokens.

 m m
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H M N
Transformers R R H
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Jin, et al. Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR’23.

O

Edgeformer-E
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Graph-Empowered LLM: Edgeformers

d Text-aware node representation learning (Edgeformer-N)
O Aggregate edge representations

O Enhance edge representations with node’s local network structure
Node Representation -:-

T B O O O Virtual Node Token Hidden States

[ A(ici() } B Virtual Local Network Hidden State

L

al Network Aggregation

Ego-Graph

Jin, et al. Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR’23.



Graph-Empowered LLM: Edgeformers

d Edge classification A Link prediction

Table 7: Edge classification performance on Amazon-Movie, Amazon-App, GoodreadS-Crime, and Amazon-Movie Amazon-Apps  Goodreads-Crime  Goodreads-Children  StackOverflow
Goodreads-Children. Model MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG
Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children MF 0.2032 03546  0.1482 03052 0.1923  0.3443  0.1137 02716 0.1040 0.2642
: ) : : MeanSAGE 0.2138 0.3657 0.1766 0.3343 0.1832  0.3368 0.1066  0.2647  0.1174 0.2768
Model Macro-F1  Micro-F1 Macro-F1 Micro-FI Macro-F1 Micro-F1  Macro-F1  Micro-F1 MaxSAGE 02178 03694 0.1674 03258 0.1846 03387  0.1066  0.2647  0.1173 0.2769
TE-IDF 50.01 64.22 48.30 62.88 43.07 51.72 39.42 49.90 GIN 0.2140 03648 0.1797 03362 0.1846 0.3374 0.1128  0.2700  0.1189 0.2778
TF-IDF+nodes 53.59 66.34 50.56 65.08 49.35 57.50 47.32 56.78 CensNet 0.2048 0.3568 0.1894 0.3457 0.1880 0.3398  0.1157 0.2726 0.1235  0.2806
EHGNN 4990 64.04 4820 63.63 44.49 5230 40.01 5023 NENN 0.2565 0.4032 0.1996 0.3552 0.2173  0.3670 0.1297  0.2854  0.1257 0.2854
BERT 0.2391 03864 0.1790 0.3350 0.1986 0.3498 0.1274  0.2836  0.1666 0.3252
BERT 61.38 71.36 59.11 69.27 56.41 61.29 51.57 57.72 BERT+MaxSAGE  0.2780 04224 02055 03602 02193 03694 0.1312 02872  0.1681 0.3264
BERT+nodes 63.00 72.45 59.72 70.82 58.64 65.02 54.42 60.46 BERT+MeanSAGE  0.2491  0.3972  0.1983  0.3540 0.1952 03477 0.1223 02791  0.1678 0.3264
BERT+EHGNN 61.45 70.73 58.86 70.79 56.92 61.66 52.46 57.97 BERT+GIN 0.2573  0.4037 0.2000 0.3552 0.2007 0.3522 0.1238 0.2801 0.1708  0.3279
BERT+MaxSAGE 61.57 70.79 58.95 70.45 57.20 61.98 52.75 58.53 GraphFormers 0.2756  0.4198 02066 0.3607 0.2176 0.3684 0.1323  0.2887  0.1693 0.3278
GraphFormers 61.73 71.52 59.67 70.19 57.49 62.37 52.93 58.34 BERT+CensNet 0.1919 03462 0.1544 03132 0.1437 03000 0.0847  0.2436  0.1173  0.2789
BERT+NENN 0.2821 0.4256 0.2127 0.3666 0.2262 0.3756 0.1365  0.2925  0.1619 0.3215
Edgeformer-E 64.18 73.59 60.67 71.28 61.03 65.86 57.45 61.71 - -
Edgeformer-N 0.2919 0.4344 0.2239 03771 0.2395  0.3875  0.1446  0.3000  0.1754 0.3339
TYA% T 35%  21% 53% 29% 59% 32% 59%  26% @ 27% 1.8%
Amazon-Movie Amazon-Apps
Model Macro-F1 Micro-F1 PREC Macro-F1 Micro-F1 PREC
MF 0.7566+0.0017  0.8234+0.0013  0.8241+0.0013  0.4647+0.0151  0.8393+0.0012  0.8462+0.0006
CensNet 0.8528+0.0010  0.8839+0.0008  0.8845+0.0007 0.2782+0.0168  0.8279+0.0006  0.83310.0005
NENN 0.9186+0.0008  0.9341+0.0008  0.9347+0.0007  0.3408+0.0082  0.8789+0.0019  0.8819+0.0017
BERT 0.9209+0.0005  0.9361+0.0003  0.9367+0.0003  0.7608+0.0175  0.9283+0.0015  0.9337+0.0015
BERT+CensNet  0.9032+0.0006  0.9221+0.0004  0.9227+0.0004  0.5750+0.0277  0.8692+0.0034  0.8731+0.0028
BERT+NENN  0.9247+0.0005  0.9387+0.0004  0.9393+0.0005 0.7556+0.0092  0.9306+0.0008  0.9382+0.0006
Edgeformer-N  0.9276+0.0007  0.9411%0.0006  0.9417+0.0005  0.7758+0.0100  0.9339+0.0007  0.9431+0.0005
32 Jin, et al. Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks. ICLR’23.




Graph-Empowered LLM: Heterformer

d Learning on heterogeneous text-attributed graphs.
- Text-attributed.

O Heterogeneous: presence or absence of text & diversity of types.

a E.g., Academic Networks, Social Media Networks

blog |
paper @ corpus |
e | Q e
............. by corpus |
l EI Pa er N 66 NS ) -
= | -rich) 1 ® blog "
author (text-rich) .
(textless) i ' user
! CONFERENCE _@%%%/' Venue (textless) '
& 3/ I Bokop (textless) éé ta :

(textless) ,

— o mm s = mm s

Academic Network Social Media Network

Jin, et al. Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD’23.
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Graph-Empowered LLM: Heterformer

a Overall framework
 Heterformer: a graph-empowered Transformer.

d Unifying text semantic encoding and network signal capturing.

Center Node Embedding

| Transformer Layer |

[ Transformer Layer ]

e w

|
|
© . |l AcG :
|
i
|

(=BT (2%

|
:I g O@ AGG I: _ \._._._._._._.._._._._._._.‘__..::__..__.._T_../
\ ! ¥
(R 2 _._ . 'l % [ Transformer Layer ] !O Textless Node |

I i !
! @Text rich Node’

N o o — — — — — AT I T L T ——

B Heterformer is a network-empowered Transformer.

Jin, et al. Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD’23.
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Graph-Empowered LLM: Heterformer

A Text-Rich Node Encoding
0 Network-aware node text encoding with virtual neighbor tokens.

0 Multi-head attention-based heterogeneous neighbor aggregation.

S momom )

B m m Text-rich Neighbor Textless Neighbor

Aggregation Aggregation
Transformers I Heterformer

" Bl 0O
Be®)| 5 8 n (B<L]

= 0 = Text-rich Neighbor Textless Neighbor
%regation ] M m Aggregation/

\ HE B = J @
@ Ego-Graph
O

O

Jin, et al. Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD’23.
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Graph-Empowered LLM: Heterformer

a Textless Node Encoding

 Node type heterogeneity-based representation

hy) = qg’)h“’), where ¢(v,) = ¢i, ¢; € ArL.

Node type heterogeneity

d  Textless node embedding warm up

O A great number of textless nodes will introduce a great number of randomly initialized parameters
into the model -> underfitting.

O Warm up to give textless node embeddings good initializations.

r Ty
exp(h,’ h, o)
mnLw= ), ), 0 hTHD)
hvp UPG'V Oy EN\UP exp(hvll h ) + Z , exp( h )
$(vp)eATL

Jin, et al. Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD’23.



Graph-Empowered LLM: Heterformer

A Link prediction A Node classification

Method DBLP Twitter Goodreads Table 3: Transductive text-rich node classification.
PREC | MRR | NDCG | PREC | MRR | NDCG | PREC | MRR | NDCG
MeanSAGE 0.7019 0.7964 0.8437 0.6489 0.7450 0.7991 0.6302 0.7409 0.8001
BERT 0.7569 0.8340 0.8726 0.7179 0.7833 0.8265 0.5571 0.6668 0.7395 Method . DBLP . Goodreads
Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1
Z  BERT+MeanSAGE | 0.8131 0.8779 0.9070 0.7201 0.7845 0.8275 0.7301 0.8167 0.8594
G BERT+MAXSAGE | 08193 | 0.8825 | 09105 | 07198 | 07845 | 0.8276 | 07280 | 0.8164 | 0.8593 BERT | 06119 | 05476 08364 | 07713
§  BERT+GAT 0.8119 0.8771 0.9063 0.7231 0.7873 0.8300 0.7333 0.8170 0.8593 BERT+MaxSAGE | 0.6179 0.5511 0.8447 0.7866
= GraphFormers 0.8324 0.8916 0.9175 0.7258 0.7891 0.8312 0.7444 0.8260 0.8665 BERT+MeanSAGE |  0.6198 0.5522 0.8420 0.7826
>  BERT+RGCN 0.7979 0.8633 0.8945 0.7111 0.7764 0.8209 0.7488 0.8303 0.8699 BERT+GAT 0.5943 0.5175 0.8328 0.7713
(23 BERT+HAN 0.8136 0.8782 0.9072 0.7237 0.7880 0.8306 0.7329 0.8174 0.8597 GraphFormers 0.6256 0.5616 0.8388 0.7786
o BERT+HGT 0.8170 0.8814 0.9098 0.7153 0.7800 0.8237 0.7224 0.8112 0.8552
% BERT+SHGN 0.8149 0.8785 0.9074 0.7218 0.7866 0.8295 0.7362 0.8195 0.8613 BERT+HAN 0.5965 0.5211 0.8351 0.7747
T GraphFormers++ 0.8233 | 08856 | 09130 | 07159 | 07799 | 08236 | 0753 | 0.8328 | 0.8717 BERT+HGT 0.6575 0.5951 0.8474 0.7928
- " - - - - - " " BERT+SHGN 0.5982 0.5214 0.8345 0.7737
Heterformer | 0.8474* | 0.9019* | 0.9255* | 0.7272* | 0.7908" | 0.8328" | 0.7633* | 0.8400* | 0.8773 GraphFormers++ 0.6474 0.579 0.8516 07993
Heterformer | 0.6695* | 0.6062* | 0.8578* | 0.8076*

Q Node clustering

Method DBLP Goodreads d Embedding visualization

NMI | ARI | NMI | ARI
BERT | 0.2570 | 0.3349 | 0.2325 | 0.4013

BERT+MaxSAGE 0.2615 0.3490 | 0.2205 | 0.4173
BERT+MeanSAGE | 0.2628 0.3488 | 0.2449 | 0.4329

BERT+GAT 0.2598 0.3419 | 0.2408 | 0.4185
GraphFormers 0.2633 0.3455 0.2362 | 0.4139
BERT+HAN 0.2568 0.3401 0.2391 | 0.4266
BERT+HGT 0.2469 0.3392 | 0.2427 | 0.4296

BERT+SHGN 0.2589 0.3431 0.2373 | 0.4171

GraphFormers++ 0.2566 0.3432 | 0.2372 | 0.4211
0.2429 | 0.4199

Heterformer | 0.2707* | 0.3639*

(a) DBLP (b) Goodreads
37 Jin, et al. Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks. KDD’23.
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Outline

ad Why Mining Graphs with Large Language Models?
A Mining Pure Graphs with Large Language Models
Q Mining Text-Attributed Graphs with Large Language Models

0 Model architecture — representation learning
O  Language Model Pretraining: Patton (ACL'23)
0 Augment LLM with Graph

AQ Mining Text-Paired Graphs with Large Language Models



Why do we need language model pretraining on network?

d Given a text-rich network, people are interested in various downstream tasks

aJ Document/node classification, document retrieval and link prediction

a Text-rich network contains rich unsupervised semantic information

2 Alleviate human labeling burden for downstream tasks

= Retrieval

— )\ _—%oKDD ' /
| mewgp | . G-Adapted _~» Reranking
/A~ CONFERENCE .
\l\ » : FEl ™ Classification

Link prediction

Pretraining on a Text-rich Network G Finetuning on downstream tasks

39 Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.



Language Model Pretraining: Patton

d How to design pretraining strategies to help LMs extract unsupervised semantic
information from the network?

d Motivation 1: On token-level, documents can help facilitate the understanding of tokens.

o o ———— —— — — ——
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40 Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.




Language Model Pretraining: Patton

d How to design pretraining strategies to help LMs extract unsupervised semantic
information from the network?

 Motivation 2: On document-level, the two connected nodes can have quite related
overall textual semantics.
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41 Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.



42

Language Model Pretraining: Patton

Q Pretraining strategy 1: Network-contextualized masked language modeling

O Original masked language modeling

you has the highest probability you,they, your..

O BERT, domain adaptation

Output [CLS] how are doing | today @ [SEP]

O The semantics of each token can be reflected by its contexts. | T T T T T I I

BERT masked language model ‘

Lyiv = — ) log p(w;| Hy), |
& I S

 Ours
3 In node MLM -> Network contextualized MLM

0 Use both in-node text context and neighbor node context to conduct masked token prediction

O Facilitate the LM to understand both in-node token correlation and network-contextualized text semantic
relatedness

On the [mask] ?
and risks of ...

=

B

Lxvim = — ) log p(wi|Hy, 22),

1€ My
Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.
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Language Model Pretraining: Patton

a Pretraining strategy 2: Masked Node Prediction

O We dynamically hold out a subset of nodes from the network (M,, € V), mask them, and
train the LM to predict the masked nodes based on the adjacent network structure. @

2 LM will absorb document semantic hints hidden inside the network structure.

Lunp =— Y log p(v;|Gy,)) B B

0 Directly optimizing masked node prediction is computationally expensive [T ploomsa = vilvk € Nuge)
. . . . vmMask] € My
O Representations for all candidates/neighboring nodes T
X p(vk € N’U[MASKJ |U[MASK] = vi)
0  We prove that masked node prediction can be theoretically transferred to a Vs €My
computationally cheaper pairwise link prediction task. - A EIIV_[ p(vklvnmsa = vi)
U[MASK] v V€ Nuyask]
= ] H p(vg <— v;)

U[MASK] E‘2\4’1.) vkENv[MASK]

43 Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.



Language Model Pretraining: Patton

d Retrieval A Classification

Table 3: Experiment results on Retrieval. We show the meangy of three runs for all the methods. Table 2: Experiment results on Classification. We show the meangy of three runs for all the methods.
Method Mathematics Geology Economy Clothes Sports Method Mathematics Geology Economy Clothes Sports
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1  Micro-F1
BM25 20.76 24.55 19.02 20.92 19.14 22.49 15.76 15.88 22.00 23.96 BERT 18.14907  22.04032 2197087  29.63036  14.17008  19.770.12 4510147  68.54995  31.88023  34.58056
BERT 16.730.17 22.66018 18.82039 25.94039 23.95005 31.54021 40.7716s8 50.40141 32.37100 43.320.96 GraphFormers 18.69052  23.24046  22.64092  31.02116  13.68103  19.001.44 4627192  68.97246  43.77063  50.470.78
GraphFormers 16.650.12 22.41p10 18,92060 2594039 24.48p36 32.160.40 41.77205 51.262927 32.39%.s9 43.291.12 SciBERT 23.500.64 23.102.23 29.49; o5 37.821 89 15.91¢ 48 21.320.66 - - - -
SciBERT 24.70017 33.55031 23.7lpgg 30.94995 29.80066 38.660.52 - - - - SPECTER 23.370.07 29.830.06 30.400 48 38.540 77 16.16¢ 17 19.84¢ 47 - - - -
SPECTER 23.860.25 31.11g31 26.56105 34.04132 31.26015 40.79.11 - - - - SimCSE (unsup) 20.12008  26.11p39  38.780.19  38.55017  14.54p26  19.07043  42.70232  58.720314 4191985  59.19¢55
SImCSE (unsup) ~ 17.91025 2319020 2045020 26.8%026 25.83023 3342028 44.90035 54.7603s 38.8loss  49.300.44 SimCSE (sup) 20.3900;  25.56000 25.6602s  33.80040 1503053 186413 528205  75.5dpes  46.6%10  59.19035
SimCSE (sup) 2029041 2623051 2234049 29.63055 2807035 3651037 44.69050 5470077  40.3loas  50.550.41 LinkBERT 1578001 1975110  24.080ss 3132001 127lo1a  16.3902 44.94psy 6533131  35.60053  38.30000
LinkBERT 17.25050 2321047 1714075 23.05074 22.69030 30.77p36 28.66207 37.79380 3197054 4177067 i : : : : - : : : }
BERT.MLM 23.44¢.39 31.750.58 36.310.36 48.040.69 16.600.21 22.711.16 46.980.84 68.000.84 62.210.13 75.430.74
6 - - ,
BERT.MLM 20.69021 2717025 3213036 41.74p42 27.13p04 36.00014 52.41171 63.72179 54.10081 63.14083 SCiBERT.MLM 23.34 45 30.11¢.07 36.940 .95 46.540 49 16.280.58 214108 B

SciBERT.MLM 20.650.01 27.67032 31.65071 40.52076 29.23067 39.180.73 - - - -

SimCSE.in-domain 24'54005 31.660.09 33.97.67 44‘090.19 28.44¢ 3, 374810‘27 61-420484 72»250,86 53'770‘22 63,73[]‘30 SimCSE.in-domain 25.150_09 29.850_20 38.910_08 48.930_14 18.080_22 23,790_44 57.030_20 80.160_31 65.57()‘35 75.220_13

PATTON 2744015 34.970;1 3494023 45.0l102s 321005 4219052 68.6203s 7754010 586303 685355 PATTON 2758005 3282001  39.35006 4819015  19.3205 2512005 6014025  84.88009  67.5700s  78.600.15

SciPATTON 314005 4038066 40.69052 51.31p4s 35.82069 46.050.69 - - - - _SciPATTON 2735004 31.700.01  39.650.10 489300 1991905 256803 - - . .. I
“WiONMLM 3085014 39.89023 39.2%007 495911 3517031 4607020 65.60026 75.19032 57.050.1a 67.22012 w/o NMLM 2591045  27.79.07 38.780.19 4848017  18.86023 24.25026  56.68021¢  80.27017  65.8302s  76.240.54

w/o MNP 2247007 30.20015 31.28089 40.5d0.97  29.54036 39.57057 60.20073 69.85052 51.730.41  60.350.78 w/o MNP 24.790.65 29.44, 50 38.000.73 47.821.06 18.690.59 25.631.44 47.351.20 68.502.60 64.231 53 76.031 67

Q Link prediction ad How pretraining help the model?

Table 5: Experiment results on Link Prediction. We show the meangy of three runs for all the methods. D F IN et une d ata Slze St u d y

Method Mathematics Geology Economy Clothes Sports
PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR

BERT 6.60016 1296031 624076  12.96131 412008 923015 2417041 34.20045 1648045  25.35052

GraphFormers 691020 134231 6.52117 133415 416021 928028  23.7960 33.79%66  16.69036  25.74o.s

SciBERT 14.08011  23.62010  7.15026  14.11939  5.01304  10.481.79 - - - - 0.8 0.5

SPECTER 134495 2173065  6.85022  13.37034  6.33020 124103 - - - . 0.8

SimCSE (unsup) 9.85010 16.28010 7AToss 14.2d059 572006 1102034 305109 40.40010 22.9907  32.470.06 B o @ 0.7 =04

SimCSE (sup) 1035052 1701072 1010004 17.80007 57226 11.02031 3542005 46.07006 27.07015 37.44016 = o 9

LinkBERT 805014 1391009 640014 129917 297008  6.7%.15 3033056  39.5964 19.83000  28.320.04 E biE Qo6 D3

BERT.MLM 17.55025 29.22026 1413019 25.36020 9.02000 16.72015 42713 5454035 29.36000  41.600.05 = — GraphFormers — GraphFormers 2 —_ GraphFormers| & — GraphFormers

SGBERTMLM  224dogs 3422005 1622008  27.02007 980000  17.72001 - - - - 0.5 Bire 0.4 G : ' B 0.2 B

SimCSE.in-domain  33.55005 46.07007 24.56005 36.89011 1677010 26.93001 6041503 7186005 4917005 63.48003

PATTON 704101, 80.2lo0s 4476005 577loos  57.0%00s  08.3%00s 585%12 7012012  46.08009  60.9602s 0 2000 gooo 6000 8000 0 zooood 40000 60000 0 10000d 20000 30000 0 10000 20000 30000
_SciPaTTON ______ 7122017 _80.7%.10 _ 4495024 _ 5784025 573602 68.7losy - - > s S ata At 2t data

wio NMLM 71.04015  80.60007 44.33025 57.29020  56.6d905 68.12016 60.30003  71.67007 49.72006  63.760.04 . . . : 3 e

w/o MNP 63.06025 T74.26011 33.8d0g0 47.02065 44.46005 57.05001 49.62006 616loor  36.05020  49.780.5 (a) Classification (b) Retrieval (c) Reranking (d) Link Prediction

A4 Jin, et al. Patton: Language Model Pretraining on Text-rich Networks. ACL'23.
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ad Why Mining Graphs with Large Language Models?
A Mining Pure Graphs with Large Language Models
Q Mining Text-Attributed Graphs with Large Language Models

0 Model architecture — representation learning

O Language Model Pretraining
O Augment LLM with Graph: Graph CoT (arxiv'24) @

AQ Mining Text-Paired Graphs with Large Language Models



Augment LLM with Graph

Q Retrieval-augmented generation (RAG)

O Motivation
d LLMs suffer from hallucination
d External corpus can provide knowledge to mitigate hallucination

O Pipeline What if the text units in
d Retriever: fetch knowledge from corpus the corpora is linked?

O LLM: inference
Augment LLM with External Texts

Question ( \
Who develops both " " Masked Autoencoders
—_— ] ..
Resnet and MAE? Are Scalable Vision
~w Learners. Kaiming He, ...

TNl LLMs ~\_ External Text Corpora

- -
S —————

46 Jin, et al. Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. Arxiv’24.



Augment LLM with Graph: Graph CoT

d Graph Chain-of-Thought

d Iteratively traverse on graph & reasoning with LLM

Question Whole process
[ Who develops both Resnetand MAE? | _ _ _ _ __ __ | .| &) We need tofirst find ResNet and MAE in the graph.
'@ r ) ) : B8 RetrieveNode(Resnet), RetrieveNode(MAE) @
( \" L@ LLM Reasonmg 1 c The node IDs for Resnet and MAE are p-152 and p-562.
! u r y! @ Next, check the author neighbors of the two papers.
1 c Graph Execution ||
) | J'| B8 Neighborcheck(p-152,author), Neighborcheck(p-ssz.author)@

e e e = I TTTTmems C The authors neighbors are [a-54, a-75, ...] and [a-75, a-23, ...].

S z -
@/ \\ |@ r 5! @ The intersection author is a-75. Let’s check his/her name.
. |
R / : @ LLM Reasoning || g& NodeFeature(a-75,name) ©
.
I

c The name for a-75 is Kaiming He.

[ . e
i c Graph Execution ' @ We have obtained the answer: Kaiming He

| I J ’ '
\ External Grapy 1: T m——— - =! Q Finish[Kaiming He] @

{&)Reasoning — @ Finish

47 Jin, et al. Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. Arxiv’24.
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Why Mining Graphs with Large Language Models?
Mining Pure Graphs with Large Language Models
Mining Text-Attributed Graphs with Large Language Models

Mining Text-Paired Graphs with Large Language Models @
MolT5 (EMNLP’22)
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MolT5

d A pretrained molecular language model

Protein Graphs Molecule Graphs

kl_r “Benzene 1s toxic”
~p-B

K/ E H
P d “Water is less toxic”

“Myoglobin holds A H
oxygen in muscles.”

Initialized from a public

Pre-training t5.1.1 checkpoint

ON=CCC1=C[NH1]C2 IX] h [X] cC=CC=C12

’

| 1
| _ MolT5 R

Lissamine fast yellow(2-) is an
[X] ‘resulting [Y] [X] organosulfonate oxoanion [Y] from the
removal of a proton

Y'Y

Fine-tuning R 3 2 3.9 .8 2
'3 %gJJ'dJA% é \.)Auu\z
The molecule is a siderophore C(CC(=O)NCCNC(=0)CcC(CC
Molecule
G : composed from L-2,3- (=O)NCC(C(=0)O)N)
eneration diaminopropionic acid, ... (C(=0)0)0)C(=0)C(=0)0

9990

N I |
i oy MoIT5
0 oy ,—) —¢

The molecule is an aminobenzoic

acid that is anthranilic acid in which
one of the hydrogens attached to ...

Molecule CC1=C(C(=C(C=C1)Cl)
Captioning NC2=CC=CC=C2C(=0)0)CI

Carl, et al. Translation between Molecules and Natural Language. EMNLP’22.
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50 Jin, et al. Large Language Model on Graphs: A Comprehensive Survey. Arxiv. 2023.12.
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